
On Efficient Map-matching According to
Intersections You Pass By

Yaguang Li1,3, Chengfei Liu2, Kuien Liu1, Jiajie Xu1, Fengcheng He1,3, and
Zhiming Ding1

1 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
{yaguang,kuien,jiajie,fengcheng,zhiming}@nfs.iscas.ac.cn

2 FICT, Swinburne University of Technology, Australia
cliu@swin.edu.au

3 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. Map-matching is a hot research topic as it is essential for
Moving Object Database and Intelligent Transport Systems. However,
existing map-matching techniques cannot satisfy the increasing require-
ment of applications with massive trajectory data, e.g., traffic flow anal-
ysis and route planning. To handle this problem, we propose an efficient
map-matching algorithm called Passby. Instead of matching every single
GPS point, we concentrate on those close to intersections and avoid the
computation of map-matching on intermediate GPS points. Meanwhile,
this efficient method also increases the uncertainty for determining the
real route of the moving object due to less availability of trajectory infor-
mation. To provide accurate matching results in ambiguous situations,
e.g., road intersections and parallel paths, we further propose Passby*.
It is based on the multi-hypothesis technique and manages to maintain
a small but complete set of possible solutions and eventually choose the
one with the highest probability. The results of experiments performed
on real datasets demonstrate that Passby* is efficient while maintaining
the high accuracy.

Keywords: Efficient Map-matching, Multi-Hypothesis Technique

1 Introduction
The past few years have seen a dramatic increase of GPS-embedded and hand-
held navigation devices. These devices allow to record accurately the spatial
displacement of moving objects. Given their low set-up cost, large volumes of
data can be easily generated. In order to provide a range of Intelligent Trans-
port Systems services, e.g., traffic flow analysis [1], route planning [2], hot route
finder [3], we need to analyze large amounts of trajectory data. An essential
pre-processing step that matches the trajectories to the road network is needed.
This technique is commonly referred as map-matching.

However, existing map-matching techniques cannot fully satisfy the increas-
ing requirement of applications with massive trajectory data. Some local/increment
map-matching methods [4, 5] are fast but generate inconsistent matching results



2

since they ignore the correlation between subsequent points and topological in-
formation of the road network. Meanwhile, more advanced map-matching meth-
ods, e.g., global approach [6, 7] and statistical approach [8, 9], manage to be quite
accurate, but suffer from high computational complexity.

To handle this problem, we propose an efficient map-matching algorithm
called Passby. Instead of matching every single GPS point, we concentrate on
those close to intersections and avoid the computation of map-matching on in-
termediate GPS points. In the circumstances of constrained road network, if a
moving object passes by the start vertex of edge e at ti, and the end vertex of e at
a reasonable time tj , the object is then supposed to be on e at the time interval
between ti and tj . Figure 1 illustrates an example of such case, i.e., we just have
to match these thick blue points close to intersections instead of analyzing every
single point. While cutting the cost of computing on intermediate GPS points

 pi (ti , xi , yi)

 pj (tj , xj , yj)

Fig. 1: An example of Passby.

makes map-matching more efficient, nevertheless it is not at no cost. The uncer-
tainty for determining the real route of the moving object also arises due to less
availability of trajectory information. The challenge of this work is to keep pro-
viding accurate matching results in ambiguous situations, e.g., road intersections
and parallel paths. To handle this challenge, we propose another algorithm called
Passby*, which is based on the multi-hypothesis technique, to maintain all the
possible solutions in situations of ambiguity and eventually choose the one with
the highest probability. Meanwhile, several efficient approaches for hypothesis
management are developed to further improve the performance of Passby*.

To summarize, this paper makes the following contributions:

• We propose two efficient map-matching algorithms, Passby and Passby*.
They avoid large parts of computation by only performing map-matching on
GPS points close to intersections and inferring the remaining ones.

• We develop a set of novel approaches for hypothesis creation, evaluation and
management which make the algorithm both efficient and accurate.

• We present a solution to edge simplification and edge measurement error.
As Passby* mainly bases on positions of intersections and road connectivity,
it is robust when geometric information of the edge is not available or not
accurate enough.

• We conduct experimental study on real dataset and demonstrate the efficiency
and accuracy of the proposed algorithms.



3

The rest of the paper is organized as follows. Section 2 discusses the related
work. Section 3 gives the problem statement. The proposed algorithm is de-
scribed in Section 4. The results of experiments and the analysis are presented
in Section 5. Finally, conclusions and future work are summarized.

2 Related Work
In this section, we present a brief overview of previous studies on map-matching
and the multi-hypothesis technique.

2.1 Map-matching Techniques
Map-matching is commonly referred as the process of aligning a sequence of
observed positions with the road network. Approaches for map-matching algo-
rithms can be categorized into three groups [6]: local/incremental method [4, 5,
10], global method [6, 7, 11], and statistical method [8, 9]. The local/incremental
method tries to find local match of geometries, and performs matching based on
the previous matching result of a point. The global method aims to find a global
optimal match for the entire trajectory and a path in the road network. The
algorithm in [11] is based on Frechét distance and its variant. [6] proposes an
algorithm that takes temporal information into consideration and manages to get
a high accuracy for low-sampling-rate GPS trajectories. Statistical method is also
widely used. A method based on the Bayesian classifier is presented in [9]. [8]
proposes an algorithm that takes advantage of the rich information extracted
from the historical trajectories to infer the real routes.

Many advanced techniques are also integrated with map-matching [12]. [13]
proposes a fuzzy logical based method that is able to take noisy, imprecise input
and yield crisp output. [7] proposes a method based on the Hidden Markov Model
which can deal with the inaccuracies of the location measurement systems.

Most existing map-matching algorithms have to perform map-matching on
every single trajectory point which is not always necessary. Instead of matching
every single GPS point, we concentrate on those close to intersections and infer
the results for the remaining points to avoid extra computation.

2.2 Multi-Hypothesis Technique

The Multi-Hypothesis Technique(MHT) is a method to track multiple targets
under the clutter environment using a likelihood function [14]. To realize a map
matching method using the MHT, pseudo-measurements are generated utilizing
adjacent roads of GPS position and the MHT is reformulated as a single tar-
get problem [15]. The main advantage of multi-hypothesis map-matching over a
mono-hypothesis approach is that it maintains all the possible solutions in situ-
ations of ambiguity and eventually chooses the one with the highest probability.
Two map-matching methods using the MHT are proposed in [15] and [16]. These
previous works are more focused on the accuracy than the efficiency which makes
them unsuitable for processing massive trajectory data. Moreover, these meth-
ods have to use extra information from the dead reckoning device, e.g., heading,
acceleration and speed, which is not always available.



4

3 Problem Statement
We have a standard road network representation in which intersections are repre-
sented by vertices and roads are represented by directed edges and the geometric
detail of roads are described by polylines.

Definition 1 (Road Network). The road network G is defined as:

G = (V,E) (1)

where V is the set of vertices while E is the set of directed edges. A vertex
of G is defined as: v = (vid, lat, lng), where vid is the identifier of v while lat
and lng denote the latitude and longitude of v. An edge of G is defined as:
e = (eid, geo, len, vfrom, vto), where eid is the identifier of e, len is the length of
e, vfrom and vto represent the start and the end vertices of e, geo is a polyline
representing the geometry of e.

In the most simplified road network described in [17], geo is not available
which will pose a great challenge to map-matching algorithms. For robustness
evaluation, we will also conduct experiments on the most simplified road network.

Definition 2 (Path). A path P is defined as a sequence of edges:

P = (ei)
n
i=1 n ≥ 1 ∧ ∀1 ≤ i < n ei+1.start = ei.end (2)

The start vertex and the end vertex of P are defined as:

P.start = e1.start P.end = en.end

Definition 3 (Trajectory). The trajectory of a moving object is defined as a
sequence of points with timestamps:

T = (pi)
n
i=1 = (ti, lati, lngi)

n
i=1

We use T [i] to represent the ith point of T and −−−−→pi, pi+1 to represent the ith
trajectory segment of T . −−−−→pi, pi+1 is defined as the directed line segment formed
by pi and pi+1.

Definition 4 (Matching Result). Given a trajectory T = (pi)
n
i=1, the match-

ing result R is defined as:
R = (pi, ei)

n
i=1 (3)

where ei denotes the edge that pi be matched to.

Definition 5 (Matching Accuracy). Given the matching result R = (pi, ei)
n
i=1

and the ground truth Rt = (pi, êi)
n
i=1, the accuracy A is defined as:

A =

∑n
i=1 θi
n

θi =
{
1 if R.ei = Rt.êi
0 otherwise

(4)

Problem Statement The Map-matching problem can be described as, given a
road network G and a trajectory T , how to efficiently find a matching result R,
with the goal of maximizing the matching accuracy A.



5

4 Proposed Algorithms
In this section, we first illustrate the key observations of Passby followed by the
algorithm description and implementation, then we describe several novel ap-
proaches for the multi-hypothesis model in detail including hypothesis creation,
evaluation and management.

Observation 1. In most cases, if a moving object passes by both the start and
the end intersections of an edge within a reasonable period of time, the object is
supposed to be on that edge during the time interval.

According to Observation 1, we can improve the efficiency of map-matching
algorithm by avoiding the computation on intermediate GPS points.

Observation 2. The representation of vertices is generally more accurate than
edges especially when edges are simplified.

The most commonly used representation of vertex and edge in a road network
is point and polyline. Sometimes, the road network is simplified [17, 18], the
deviations between real edges and polylines can be up to hundreds of meters
due to edge simplification or edge measurement error while the representation
of vertices tends to be more accurate.

4.1 Passby: A Baseline Approach
Based on above observations, we design a map-matching algorithm called Passby,
which mainly depends on positions of intersections and road connectivity. In
particular, this algorithm does not need either the heading information or the
instantaneous speed of the vehicle from the dead reckoning device.

One of the key processes in Passby is to estimate how likely the moving object
passes by a certain vertex. We measure it using the passby probability.

Definition 6 (Passby Probability). The passby probability is defined as the
likelihood that the moving object passes by the vertex v.

Fp(T, v) =
1√
2πσ

e
(λ−µ)2

2σ2 λ = d(T, v) = min
0<i<|T |−1

d(−−−−→pi, pi+1, v)

where λ is the distance between the trajectory T and the vertex v, i.e., the
minimum distance between the segments of T and v. We use a zero-mean normal
distribution with a standard deviation of 6.4m for the training dataset.

Algorithm 1 gives an overview of Passby. The function init(G,T, i) takes
three arguments: the road network G, the trajectory T and the start index i,
to find the first passed vertex vc that d(T, vc) is less than a threshold σp, e.g.,
25m, and the index of corresponding trajectory segment ic. This can be effi-
ciently calculated by building indices on GPS points and vertices. The function
pass(T, v, i) takes three arguments: the trajectory T , the vertex v, and start
index of trajectory segment i, and returns the index of the nearest trajectory
segment from v, or 0 if no valid trajectory segment is found.

First, the algorithm performs the initialization to get the first passed vertex
vc and the corresponding index of the trajectory segment ic. (line 1). Then the



6

Algorithm 1 Passby(G,T )
Input:Road network G, trajectory T = (pi)

n
i=1 = (ti, lati, lngi)

n
i=1

1: (vc, ic)← init(G,T, 1)
2: while ic ≤ n do
3: Sc ← ∅, Se ← {e|e.start = vc}
4: for each e ∈ Se do
5: i← pass(T, e.end, ic)
6: if i > 0 then
7: Sc ← Sc ∪ {(i, e)}
8: if Sc 6= ∅ then
9: t← argmin

t∈Sc

(t.i)

10: match {pic+1, . . . , pt.i} to edge t.e
11: ic ← t.i, vc ← t.e.end
12: else
13: (vc, i

′
c)← init(G,T, ic)

14: match {pic+1, . . . , pi′c} to nearest edges
15: ic ← i′c

algorithm repeats the following process until the end of trajectory: 1) it retrieves
all the candidate edges (line 3); 2) it filters out infeasible edges using passby
probability (line 4 - line 7); 3) if valid edges exist, the edge t.e with the smallest
index is selected (line 8 - line 9), then the algorithm matches the points between
pic+1 and pt.i to t.e (line 10), otherwise a re-initialization will be made to find
the next vertex vc and corresponding index (line 13). The intermediate points
will be matched to their nearest edges (line 14). As illustrated in Figure 1, the
algorithm needs only to match the initial and the final points in most cases and
is consequently very efficient.

4.2 Passby*: A Multi-Hypothesis Based Approach
The Passby algorithm works well in the premise that every passed vertices can be
found and the one closest to the moving object is the real passed vertex. However,
this assumption may not always hold, e.g., several vertices can be quite close to
the moving object at the same time while the real passed vertex might not
be close enough to be found. To generate stable matching results in ambiguous
situations, we propose another algorithm called Passby*, which is integrated with
the multi-hypothesis technique to maintain all the possible solutions in situations
of ambiguity and eventually choose the one with the highest probability.

4.2.1 Hypothesis Creation

The traditional hypothesis creation method usually generates new hypotheses
at each step, which will result in an exponential computational complexity. To
be efficient, we redesigned the rule of hypothesis creation.

Algorithm 2 shows the pseudo-code of candidate creation process. Function
createCands(G,T, sp) takes three arguments: the road network G, the tra-
jectory T , and the path information structure sp : (v, i, f, ptr) which contains



7

information about the candidate path, where v is the vertex, i is the index of
the trajectory segment that is nearest to the v, f is the score of the path and
ptr is the pointer to the parent structure, which is used to get the whole path.

Algorithm 2 createCands(G,T, sp)
Input: Road network G, trajectory T = (ti, lati, lngi)

n
i=1, path structure sp

Output: A set of candidate path structures: Ssp

1: Ssp ← ∅
2: Sv ← {v|d(v, T [sp.i]) + d(v, T [sp.i+ 1]) ≤ 2a}
3: SP ← buildPath(G,Sv, sp)
4: for each P ∈ SP do
5: i← pass(T, P.end, sp.i)
6: if i > 0 then
7: f ← sp.f · Fp(T, P.end) · Ft(T, P )
8: Ssp ← Ssp ∪ {(P.end, i, f, sp}
9: return Ssp

pi

e1 e2

e3

e5

e4

e6
e7

e8

pi+2

pi+1

(a)

Pi+1

pi

e1 e2

e4

pi+2

v1 v2

v3

(b)

Fig. 2: Examples of hypothesis creation.

Take Figure 2(a) for example, the algorithm first retrieves all the edges whose
start vertices lie within the error ellipse that has a major axis of 2a (line 2).
e6 is not a valid edge as its start vertex falls outside the ellipse. e7, e8 won’t be
considered either as they are not connected with valid edges. Then the algorithm
builds candidate paths in line 3. These paths start from sp.v and are extended
with candidate edges based on road connectivity. Finally, the algorithm finds
these candidate paths whose end vertices are considered passed by the moving
object, and calculates their scores using passby probability and vertex transition
probability (line 4 - line 8).
Definition 7 (Vertex Transition Probability). The vertex transition prob-
ability is used to measure the likelihood that the moving object transfers between



8

vertices, and is defined as:

Ft(T, P ) = exp(−αt
∑
e∈P len(e)∑

e∈P len(proj(e, T ))
) (5)

where αt is the scaling factor, len(e) returns the length of e, and proj(e, T )
returns the projection of e on T . Figure 2(b) shows the candidate path {e2, e4},
the thick blue line represents the projection of the path on T . The efficiency of
this hypothesis creation method will be discussed in Section 4.2.3.

4.2.2 Solutions to Ambiguous Situations
In practice, there exist many ambiguous situations, e.g., Y-junctions [12] and
parallel paths, which pose a challenge to map-matching.

Definition 8 (Ambiguous Situation). An ambiguous situation is defined as
the situation in which there exists a path P in the candidate set, the end vertices
of more than one of P ’s candidate edges are close to the trajectory.

v1

v2

v3

v4

v1

(b) Parallel paths(a) Y-juntions

p1

v5

v2
v3

v4

v6

e1

e2

e3

p2

p3

p4

p5

p6

p7

e4
e5

e6e1

e2

e3

v5

e4

Fig. 3: Examples of ambiguous situations.

Figure 3(a) shows a case of Y-junctions problem with vertices represented by
solid circles are considered possibly passed by the moving object while empty
ones not, e.g., v5. It is difficult to determine whether p2, p3, p4 should be matched
to e1 or to e2. [11] describes a solution by performing certain steps of look-ahead.
However, this method is quite time-consuming especially when the number of
look-ahead is large [10].

Observation 3. In most cases, the deviation between the wrong path and the
real route of the moving object tends to increase with the elapse of time.

This simple observation is helpful to solve the Y-junctions problem. We use
the example in Figure 3(a) to explain. Let P be the path to be extended, as both
v2 and v3 satisfy the criteria, two new paths P1 = P ∪ {e1} and P2 = P ∪ {e2}
will be created. As stated in Observation 3, the deviation between the real route
and the wrong path P2 increases, there is no GPS points near the candidate
edges of P2, thus it will not be extended any more, i.e., this hypothesis will be
automatically discarded. However, Observation 3 will not hold in another kind
of ambiguous situation called Parallel Paths.



9

Definition 9 (Parallel Paths). Parallel Paths is defined as a set of paths Spp
satisfying the following two conditions:

• The maximum Hausdorff distance [19] between any two paths in SP is lower
than 2σp.

max
Pi,Pj∈Spp

h(Pi, Pj) < 2σp

• All of these paths have identical start and end vertices.

∀Pi, Pj ∈ Spp Pi.start = Pj .start ∧ Pi.end = Pj .end

Figure 3(b) gives an example of parallel paths. Both of these two paths start
from v1 and end at v6. As these two paths come quite close to each other, all the
vertices in the two paths can be possibly passed by the moving object, which
makes it difficult to find the real path. After analyzing the relation between the
cost of a path, i.e., the minimum time required to pass it, and the actual time
used to go through it, we found Observation 4.

Observation 4. The cost of the real path tends to be similar to the actual time
used to go through it.

Although the lengths of the parallel paths might be nearly the same, the differ-
ences between their costs are relatively large, e.g., the highway and the service
road nearby. Therefore, we are likely to find the real path by further considering
the cost similarity.

Definition 10 (Cost Similarity). Given a path P and a trajectory T , the cost
similarity Fc(T, P ) is defined as follows:

Fc(T, P ) =
∏
e∈P

exp(−αc|ce − ĉe|) = exp(
∑
e∈P
−αc|ce − ĉe|) (6)

ce = T [i].t− T [j].t ĉe =
len(e)

se

where ce is the actual time used to pass e, ĉe is the cost the e, αc is the scaling
factor for cost similarity. i and j are the indices of trajectory segment that pass
the start vertex and the end vertex of e, len(e) is the length of e, se is the speed
limitation of e.

4.2.3 Management of Candidate Paths
The candidate management is mainly used to reduce the candidate size while
preserving all possible solutions. It consists of two aspects: pruning and confir-
mation. Pruning is the process of eliminating infeasible candidate paths while
confirmation is the process of confirming a candidate path as the real path.

Pruning happens in the following conditions: 1)The ratio of the score of
a hypothesis to the largest score is lower than a threshold σA, which usually
happens at Y-junctions. 2) In the case of parallel paths, all the parallel paths
should be merged into a single one.



10

Confirmation happens in the following conditions: 1) The ratio of the largest
score to the next largest one exceeds a threshold σB . 2) There exists only one
hypothesis. σA and σB are two thresholds used to control the candidate size.

Next, we will show that the number of hypotheses will only increases in
ambiguous situations. In order to increase the number of hypotheses, at least
two sub-paths must be created from a path. Besides, one of the prerequisites of
hypothesis creation is that the end vertex of the path must be close enough to
the trajectory, i.e., the ambiguous situation.

4.2.4 Overview of Passby*

Figure 4 gives a description of the procedure of the algorithm. Figure 4(a) shows
the road network and the GPS points, while Figure 4(b) demonstrates the search-
ing process. As mentioned before, vertices represented by solid circles in figures
are considered possibly passed by the moving object while empty ones not. The
red cross denotes a clip of the search graph, with corresponding path being
removed from the candidate set.

v16

v15

(a)

v3

v8

v4
v7

v6

v1v2

e1

e2 e3

e4

e5

e6

e7

e6

e9

e8 e10

v5

v10

v11

v14

v15 v16

v18

v9

v13

v17

(b)

v2

v1

v3

v5
v6

v8

v7

v9

v10

v18

Y-junctions

choose the 
best path

Y-junctions 
resolved

v11

v13

v12

v12

v14

v17

parallel 
paths

v4

Fig. 4: An example of the Passby* algorithm.

Algorithm 3 outlines the framework of Passby*. SO, SP , Spp are all sets of
path information structures, i.e., sp : (v, i, f, ptr). Function getInitialCands(G,T )
is used to get the initial vertices and evaluate them with passby probability.
Function createCands(G,T, sp) is used to get candidate paths with the method
proposed in Section 4.2.1. Function getBestPath(Spp, T ) is used to get the set
of parallel paths and further evaluate them with cost similarity to get the best
path.



11

Algorithm 3 Passby*(G,T )
Input:Road network G, trajectory T = (ti, lati, lngi)

n
i=1

Output:The matching result: R
1: SO ← ∅; spc ← (null, 1, 1, null) //(v, i, f, ptr)
2: while spc.i ≤ n do
3: if SO = ∅ then
4: SO ← getInitialCands(G,T, spc.i)

5: while SO 6= ∅ ∧ spc.i ≤ n do
6: spc ← first(SO); SO ← SO\{spc};
7: SP ← createCands(G,T, spc) //Section 4.2.1
8: for each sp in SP do
9: Spp ← {sp′|sp′ ∈ SO ∧ sp′.i = sp.i ∧ sp′v = sp.v}
10: if Spp 6= ∅ then
11: spbest ← getBestPath(Spp, T ) //Section 4.2.2
12: SO ← SO\Spp ∪ {spbest}
13: else
14: SO ← SO ∪ {sp}
15: SO ← pruneConfirm(SO) //Section 4.2.3
16: spc ← argmax

sp∈SO

(sp.f)

17: R← getMatchResult(spc)
18: return R

Take Figure 4(a) for example, the algorithm first gets initial paths in line 4,
and then pop the first item from SO, i.e., the item with smallest i, as spc (line
5). Hypothesis creation method proposed in Section 4.2.1 are used to generate
candidate paths (line 6). These candidate paths are processed in line 7 to line 13.
Line 8 indicates the case of parallel paths, and the best candidate is selected using
method in Section 4.2.2 (line 10). The pruning and confirmation are performed
in line 14. Finally, the algorithm finds the path with the maximum score in SO
(line 15), i.e., {e1, e3, e4, e6, e9, e10}, and generates the matching result (line 16).

4.3 Theoretical Analysis

Now we will analyze the complexity of the Passby* algorithm. Let n be the
length of the trajectory T , l be the maximum number of edges in the error ellipse
used in the hypothesis generation process, and k be the maximum number of
candidates.

The time complexity of the function createCands, pruneConform and
getMatchResult are O(l log(l)), O(k) and O(n). In the worst-case, hypothesis
creation might be performed on every single trajectory point, so the Passby*
algorithm has the time complexity of O(nkl log(l) + nk + n) = O(nkl log(l)). In
practice, k is usually quite small, thus the time complexity of Passby* is close to
O(nl log(l)). Furthermore, as indicated by Figure 1, large part of computation
is avoid, so the constant factor is actually quite small, this is also confirmed by
the experiment.



12

5 Experiments
In this section, we first present the experimental settings, then we evaluate the
efficiency and accuracy of the proposed algorithms, finally we show their perfor-
mances on the most simplified road network.

5.1 Dataset and Experimental Setup

In our experiment, we use the road network and trajectory data provided by
ACM SIGSPATIAL Cup 2012 [20] , which is a GIS-focused algorithm competi-
tion hosted by ACM SIGSPATIAL. The road network graph contains 535,452
vertices and 1,283,540 road segments. Ground truth files are included in tra-
jectory data file, which are used in results verification. These algorithms have
been implemented with C++ on Visual Studio express platform, the results of
the experiments are taken on a computer with Intel Core2 Dual CPU T8100 2.1
GHz and 3 GB RAM.

Baseline Algorithms We compare proposed algorithms with the incremental al-
gorithm: IMM05 [11], and the Hidden Markov Model based algorithm: NK09 [7].
IMM05 performs matching based on three aspects: the distance, the direction
and a point’s previous matching result, and is known to have a low time com-
plexity. NK09 is well-known for its high accuracy and the ability to deal with
noise.

For IMM05, we use the suggested settings in [11]: µd = 10, α = 0.17, nd =
1.4, µa = 10, nα = 4. For NK09, we use the following assignment : σ = 4.1, and
β = 5. Preprocessing and optimization suggested in [7] are made to NK09. To
further speed up the algorithm, roads that are more than 50 meters away from
the GPS point are eliminated from the candidate set. For Passby and Passby*,
we use : σ = 6.4, σp = 25, αt = 65, αc = 4, σA = 0.1, σB = 3.

5.2 Matching efficiency with different sampling interval

 1

 2

 4

 8

 16

 32

 64

 128

1 2 3 4 5 6 7 8 9 10 15 20 25 30

sp
ee

d(
po

in
ts

/m
s)

sampling interval(s)

Passby*
Passby

NK09
IMM05

Fig. 5: Efficiency.

 86

 88

 90

 92

 94

 96

 98

 100

1 2 3 4 5 6 7 8 9 10 15 20 25 30

ac
cu

ra
cy

(%
)

sampling interval(s)

Passby*
Passby

NK09
IMM05

Fig. 6: Accuracy.



13

As shown in Figure 5, Passby* is 4∼10 times faster than the NK09, and is
even comparable to IMM05 when sampling interval is small. In addition, the
matching speed of Passby is a little faster than IMM05 . With the increase of
the sampling interval, the speeds of Passby and Passby* begin to decrease due
to the fact that less computation can be avoided.

The following reasons may contribute to the high efficiency of Passby*:

• Computation of map-matching on a large part of GPS points is avoided.
In most cases, Passby* needs only to match the initial and the final points.
Moreover, there is less shortest path calculation in Passby* than NK09 which
is quite time-consuming.

• The refined hypothesis management method is efficient. With the hypothe-
sis creation method proposed in Section 4.2.1, the number of hypotheses is
usually quite small.

5.3 Matching accuracy with different sampling interval

As shown in Figure 6, the matching accuracy of Passby* is quite comparable
to NK09, and much higher than IMM05. Meanwhile, the accuracies of all these
algorithms decrease with the increase of sampling interval as the deviation be-
tween the real route of the moving object and the trajectory represented by
polyline becomes larger.

In particular, the matching accuracy of Passby decreases significantly with
the increase of sampling interval. This is mainly because Passby simply choose
the nearest vertex as the real passed one which is less accurate when the distances
between the trajectory and passed vertices become larger. In contrast, Passby*
maintains all the possible paths, and eventually chooses the best one which
makes it less sensitive to the increase of sampling interval. Several reasons may
contribute to the high accuracy of Passby*:

• Passby* evaluates candidate path in terms of both temporal and spatial fac-
tors, e.g, passby probability, vertex transition probability and cost similarity.

• The refined multi-hypothesis model is used to effectively maintain a set of
candidate paths and eventually choose the best one.

• Passby* is less dependent on the geometric detail of the edge, e.g., it needs
no projection to the edge, which makes it robust to edge measurement errors.

5.4 Matching accuracy on the most simplified road network

In the most simplified road network, as mentioned in Definition 1, the edge
detail, i.e., geo, is omitted. This will significantly reduce the size of the digital
map. However, the distance between the trajectory point and the simplified edge
becomes much larger, and it sometimes can be up to hundreds of meters. Figure
7 gives an example of edge simplification. To evaluate the robustness of the
algorithms to edge simplification, we test the algorithms on the most simplified
road network.



14

pi

pi-1

e1

practical edge

simplified edge  

pi+1

d1

Fig. 7: Edge simplification.

 80

 85

 90

 95

 100

Passby* NK09 IMM05

A
cc

ur
ac

y(
%

)

Original
Simplified

Fig. 8: Matching accuracy on the most
simplified road network.

Figure 8 illustrates the matching accuracies on both the original and the
most simplified road network when the sampling interval is 10s. The accuracy of
Passby* merely changes while the accuracies of other two algorithms suffer from
significant decreases. This is because Passby* matches the trajectory mainly
based on intersections and is less dependent on edge detail information.

6 Conclusion and Future Work

In this paper, we investigate the problem of how to improve the efficiency of
map-matching, and propose two novel algorithms called Passby and Passby*.
They perform map-matching according to intersections that the moving object
passes by. Taking advantage of the proposed candidate generation and evaluation
methods, Passby* manages to efficiently provide accurate matching results in
ambiguous situations. In addition, Passby* is less dependent on the edge detail
information, and is robust to edge measurement error and edge simplification.
We conduct experimental study on real dataset to evaluate the performance of
proposed algorithms. The results of the experiments indicate that Passby* is
both efficient and accurate.

In the future work, we plan to further improve the algorithm to better process
GPS data of low sampling rate.

Acknowledgements

This work was supported by the National Natural Science Foundation of China
(Nos. 61202064, 91124001), the Strategic Priority Research Program of the Chi-
nese Academy of Sciences (No. XDA06020600), and the Key Research Program
of the Chinese Academy of Sciences (NO. KGZD-EW-102-3-3).

References

1. Liu, K., Deng, K., Ding, Z., Li, M., Zhou, X.: Moir/mt: Monitoring large-scale
road network traffic in real-time. PVLDB 2(2) (2009) 1538–1541



15

2. Gonzalez, H., Han, J., Li, X., Myslinska, M., Sondag, J.P.: Adaptive fastest path
computation on a road network: a traffic mining approach. In: VLDB. (2007)
794–805

3. Li, X., Han, J., Lee, J.G., Gonzalez, H.: Traffic density-based discovery of hot
routes in road networks. In: SSTD, Berlin, Heidelberg (2007) 441–459

4. White, C.E., Bernstein, D., Kornhauser, A.L.: Some map matching algorithms
for personal navigation assistants. Transportation Research Part C: Emerging
Technologies 8(1-6) (2000) 91–108

5. Greenfeld, J.S.: Matching gps observations to locations on a digital map. In:
Transportation Research Board. Meeting, Washington, D.C. (2002)

6. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for
low-sampling-rate gps trajectories. In: GIS, Seattle, Washington (2009) 352–361

7. Newson, P., Krumm, J.: Hidden markov map matching through noise and sparse-
ness. In: GIS, Seattle, WA, USA (2009) 336–343

8. Zheng, K., Zheng, Y., Xie, X., Zhou, X.: Reducing uncertainty of low-sampling-rate
trajectories. In: ICDE, Washington, DC, USA (2012) 1144–1155

9. Pink, O., Hummel, B.: A statistical approach to map matching using road network
geometry, topology and vehicular motion constraints. In: ITSC,IEEE. (2008) 862
–867

10. Wenk, C., Salas, R., Pfoser, D.: Addressing the need for map-matching speed:
Localizing globalb curve-matching algorithms. In: SSDBM, Washington, DC, USA
(2006) 379–388

11. Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle tracking
data. In: VLDB, Trondheim, Norway (2005) 853–864

12. Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms
for transport applications: State-of-the art and future research directions. Trans-
portation Research Part C: Emerging Technologies 15(5) (2007) 312–328

13. Syed, S., Cannon, M.: Fuzzy logic based-map matching algorithm for vehicle nav-
igation system in urban canyons. In: National Technical Meeting of The Institute
of Navigation, San Diego, CA (2004) 982–993

14. Reid, D.: An algorithm for tracking multiple targets. Automatic Control, IEEE
Transactions on 24(6) (1979) 843 – 854

15. Pyo, J.S., Shin, D.H., Sung, T.K.: Development of a map matching method using
the multiple hypothesis technique. In: Intelligent Transportation Systems, 2001.
Proceedings. 2001 IEEE, Oakland, CA, USA (2001) 23 –27

16. Abdallah, F., Nassreddine, G., Denoeux, T.: A multiple-hypothesis map-matching
method suitable for weighted and box-shaped state estimation for localization.
IEEE Transactions on Intelligent Transportation Systems 12(4) (2011) 1495–1510

17. Liu, K., Li, Y., He, F., Xu, J., Ding, Z.: Effective map-matching on the most
simplified road network. In: GIS, Redondo Beach, CA, USA (2012) 609–612

18. Zhou, J., Golledge, R.: A three-step general map matching method in the gis
environment: travel/transportation study perspective. International Journal of
Geographical Information System 8(3) (2006) 243–260

19. Alt, H., Guibas, L.: Discrete geometric shapes: Matching, interpolation, and ap-
proximation. In: Handbook of Computational Geometry, Amsterdam (1999) 121–
153

20. ACM SIGSPATIAL Cup 2012: Training data sets. (2012) Available from
http://depts.washington.edu/giscup/home.


